MPPT_Code_ESP8266.ino 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. //----------------------------------------------------------------------------------------------------
  2. // ARDUINO MPPT SOLAR CHARGE CONTROLLER (Version-3)
  3. // Author: Debasish Dutta/deba168
  4. // www.opengreenenergy.in
  5. //
  6. // This code is for an arduino Nano based Solar MPPT charge controller.
  7. // This code is a modified version of sample code from www.timnolan.com
  8. // updated 21/06/2015
  9. //
  10. // Mods by Aplavins 06/19/2015
  11. //// Specifications : //////////////////////////////////////////////////////////////////////////////////////////////////////
  12. //
  13. // 1.Solar panel power = 50W
  14. //
  15. // 2.Rated Battery Voltage= 12V ( lead acid type )
  16. // 3.Maximum current = 5A //
  17. // 4.Maximum load current =10A //
  18. // 5. In put Voltage = Solar panel with Open circuit voltage from 17 to 25V //
  19. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  20. #include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
  21. #include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
  22. #include <Wire.h>
  23. #include <SoftwareSerial.h> // using the Software Serial library Ref : http://www.arduino.cc/en/Reference/SoftwareSerialConstructor
  24. //----------------------------------------------------------------------------------------------------------
  25. //////// Arduino pins Connections//////////////////////////////////////////////////////////////////////////////////
  26. // A0 - Voltage divider (solar)
  27. // A1 - ACS 712 Out
  28. // A2 - Voltage divider (battery)
  29. // A4 - LCD SDA
  30. // A5 - LCD SCL
  31. // D2 - ESP8266 Tx
  32. // D3 - ESP8266 Rx through the voltage divider
  33. // D5 - LCD back control button
  34. // D6 - Load Control
  35. // D8 - 2104 MOSFET driver SD
  36. // D9 - 2104 MOSFET driver IN
  37. // D11- Green LED
  38. // D12- Yellow LED
  39. // D13- Red LED
  40. // Full scheatic is given at http://www.instructables.com/files/orig/F9A/LLR8/IAPASVA1/F9ALLR8IAPASVA1.pdf
  41. ///////// Definitions /////////////////////////////////////////////////////////////////////////////////////////////////
  42. // Turn this on to use the ESP8266 chip. If you set this to 0, the periodic updates will not happen
  43. #define ENABLE_DATALOGGER 1
  44. // Load control algorithm
  45. // 0 - NIGHT LIGHT: Load ON when there is no solar power and battery is above LVD (low voltage disconnect)
  46. // 1 - POWER DUMP: Load ON when there is solar power and the battery is above BATT_FLOAT (charged)
  47. #define LOAD_ALGORITHM 0
  48. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  49. #define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
  50. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  51. #define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
  52. #define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
  53. // ACS 712 Current Sensor is used. Current Measured = (5/(1024 *0.185))*ADC - (2.5/0.185)
  54. #define SOL_AMPS_SCALE 0.026393581 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
  55. #define SOL_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2 // R1=100k and R2=20k
  56. #define BAT_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get battery volts
  57. #define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
  58. #define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
  59. #define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
  60. #define PWM_MAX 100 // the value for pwm duty cyle 0-100%
  61. #define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
  62. #define PWM_START 90 // the value for pwm duty cyle 0-100%
  63. #define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
  64. #define TRUE 1
  65. #define FALSE 0
  66. #define ON TRUE
  67. #define OFF FALSE
  68. #define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
  69. #define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
  70. #define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
  71. #define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
  72. #define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
  73. #define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
  74. #define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
  75. #define BATT_FLOAT 13.60 // battery voltage we want to stop charging at
  76. #define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
  77. #define LVD 11.5 //Low voltage disconnect setting for a 12V system
  78. #define OFF_NUM 9 // number of iterations of off charger state
  79. //------------------------------------------------------------------------------------------------------
  80. //Defining led pins for indication
  81. #define LED_RED 11
  82. #define LED_GREEN 12
  83. #define LED_YELLOW 13
  84. //-----------------------------------------------------------------------------------------------------
  85. // Defining load control pin
  86. #define LOAD_PIN 6 // pin-2 is used to control the load
  87. //-----------------------------------------------------------------------------------------------------
  88. // Defining lcd back light pin
  89. #define BACK_LIGHT_PIN 5 // pin-5 is used to control the lcd back light
  90. // ---------------------------For ESP8266--------------------------------------------------------------
  91. // replace with your channel's thingspeak API key
  92. String apiKey = "DPK8RMTFY2B1XCAF";
  93. // connect 2 to TX of Serial USB
  94. // connect 3 to RX of serial USB
  95. SoftwareSerial ser(2,3); // RX, TX
  96. //---------------------------------------------------------------------------------------------------------
  97. //------------------------------------------------------------------------------------------------------
  98. /////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
  99. //-------------------------------------------------------------------------------------------------------
  100. byte battery_icons[6][8]=
  101. {{
  102. 0b01110,
  103. 0b11011,
  104. 0b10001,
  105. 0b10001,
  106. 0b10001,
  107. 0b10001,
  108. 0b10001,
  109. 0b11111,
  110. },
  111. {
  112. 0b01110,
  113. 0b11011,
  114. 0b10001,
  115. 0b10001,
  116. 0b10001,
  117. 0b10001,
  118. 0b11111,
  119. 0b11111,
  120. },
  121. {
  122. 0b01110,
  123. 0b11011,
  124. 0b10001,
  125. 0b10001,
  126. 0b10001,
  127. 0b11111,
  128. 0b11111,
  129. 0b11111,
  130. },
  131. {
  132. 0b01110,
  133. 0b11011,
  134. 0b10001,
  135. 0b11111,
  136. 0b11111,
  137. 0b11111,
  138. 0b11111,
  139. 0b11111,
  140. },
  141. {
  142. 0b01110,
  143. 0b11011,
  144. 0b11111,
  145. 0b11111,
  146. 0b11111,
  147. 0b11111,
  148. 0b11111,
  149. 0b11111,
  150. },
  151. {
  152. 0b01110,
  153. 0b11111,
  154. 0b11111,
  155. 0b11111,
  156. 0b11111,
  157. 0b11111,
  158. 0b11111,
  159. 0b11111,
  160. }};
  161. #define SOLAR_ICON 6
  162. byte solar_icon[8] = //icon for termometer
  163. {
  164. 0b11111,
  165. 0b10101,
  166. 0b11111,
  167. 0b10101,
  168. 0b11111,
  169. 0b10101,
  170. 0b11111,
  171. 0b00000
  172. };
  173. #define PWM_ICON 7
  174. byte _PWM_icon[8]=
  175. {
  176. 0b11101,
  177. 0b10101,
  178. 0b10101,
  179. 0b10101,
  180. 0b10101,
  181. 0b10101,
  182. 0b10101,
  183. 0b10111,
  184. };
  185. byte backslash_char[8] {
  186. 0b10000,
  187. 0b10000,
  188. 0b01000,
  189. 0b01000,
  190. 0b00100,
  191. 0b00100,
  192. 0b00010,
  193. 0b00010,
  194. };
  195. //-------------------------------------------------------------------------------------------------------
  196. // global variables
  197. float sol_amps; // solar amps
  198. float sol_volts; // solar volts
  199. float bat_volts; // battery volts
  200. float sol_watts; // solar watts
  201. float old_sol_watts = 0; // solar watts from previous time through ppt routine
  202. unsigned int seconds = 0; // seconds from timer routine
  203. unsigned int prev_seconds = 0; // seconds value from previous pass
  204. unsigned int interrupt_counter = 0; // counter for 20us interrrupt
  205. unsigned long time = 0; // variable to store time the back light control button was pressed in millis
  206. int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
  207. int pwm = 0; // pwm duty cycle 0-100%
  208. int back_light_pin_State = 0; // variable for storing the state of the backlight button
  209. boolean load_status = false; // variable for storing the load output state (for writing to LCD)
  210. enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
  211. // set the LCD address to 0x27 for a 20 chars 4 line display
  212. // Set the pins on the I2C chip used for LCD connections:
  213. // addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
  214. LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
  215. //------------------------------------------------------------------------------------------------------
  216. // This routine is automatically called at powerup/reset
  217. //------------------------------------------------------------------------------------------------------
  218. void setup() // run once, when the sketch starts
  219. {
  220. pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
  221. TURN_OFF_MOSFETS; // turn off MOSFET driver chip
  222. charger_state = off; // start with charger state as off
  223. lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
  224. // create the LCD special characters. Characters 0-5 are the various battery fullness icons
  225. // icon 7 is for the PWM icon, and icon 8 is for the solar array
  226. lcd.backlight();
  227. for (int batchar = 0; batchar < 6; ++batchar) {
  228. lcd.createChar(batchar, battery_icons[batchar]);
  229. }
  230. lcd.createChar(PWM_ICON,_PWM_icon);
  231. lcd.createChar(SOLAR_ICON,solar_icon);
  232. lcd.createChar('\\', backslash_char);
  233. pinMode(LED_RED, OUTPUT);
  234. pinMode(LED_GREEN, OUTPUT);
  235. pinMode(LED_YELLOW, OUTPUT);
  236. Timer1.initialize(20); // initialize timer1, and set a 20uS period
  237. Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
  238. Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
  239. Serial.begin(9600); // open the serial port at 9600 bps:
  240. ser.begin(9600); // enable software serial
  241. ser.println("AT+RST"); // reset ESP8266
  242. pwm = PWM_START; //starting value for pwm
  243. pinMode(BACK_LIGHT_PIN, INPUT);
  244. pinMode(LOAD_PIN,OUTPUT);
  245. digitalWrite(LOAD_PIN,LOW); // default load state is OFF
  246. digitalWrite(BACK_LIGHT_PIN,LOW); // default LCd back light is OFF
  247. // display the constant stuff on the LCD
  248. lcd.setCursor(0, 0);
  249. lcd.print("SOL");
  250. lcd.setCursor(4, 0);
  251. lcd.write(SOLAR_ICON);
  252. lcd.setCursor(8, 0);
  253. lcd.print("BAT");
  254. }
  255. //------------------------------------------------------------------------------------------------------
  256. // Main loop
  257. //------------------------------------------------------------------------------------------------------
  258. void loop()
  259. {
  260. read_data(); // read data from inputs
  261. run_charger(); // run the charger state machine
  262. print_data(); // print data
  263. load_control(); // control the connected load
  264. led_output(); // led indication
  265. lcd_display(); // lcd display
  266. #if ENABLE_DATALOGGER
  267. wifi_datalog(); // sends data to thingspeak
  268. #endif
  269. }
  270. //------------------------------------------------------------------------------------------------------
  271. // This routine reads and averages the analog inputs for this system, solar volts, solar amps and
  272. // battery volts.
  273. //------------------------------------------------------------------------------------------------------
  274. int read_adc(int channel){
  275. int sum = 0;
  276. int temp;
  277. int i;
  278. for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
  279. temp = analogRead(channel); // read the input pin
  280. sum += temp; // store sum for averaging
  281. delayMicroseconds(50); // pauses for 50 microseconds
  282. }
  283. return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
  284. }
  285. //------------------------------------------------------------------------------------------------------
  286. // This routine reads all the analog input values for the system. Then it multiplies them by the scale
  287. // factor to get actual value in volts or amps.
  288. //------------------------------------------------------------------------------------------------------
  289. void read_data(void) {
  290. sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -12.01); //input of solar amps
  291. sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
  292. bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
  293. sol_watts = sol_amps * sol_volts ; //calculations of solar watts
  294. }
  295. //------------------------------------------------------------------------------------------------------
  296. // This is interrupt service routine for Timer1 that occurs every 20uS.
  297. //
  298. //------------------------------------------------------------------------------------------------------
  299. void callback()
  300. {
  301. if (interrupt_counter++ > ONE_SECOND) { // increment interrupt_counter until one second has passed
  302. interrupt_counter = 0; // reset the counter
  303. seconds++; // then increment seconds counter
  304. }
  305. }
  306. //------------------------------------------------------------------------------------------------------
  307. // This routine uses the Timer1.pwm function to set the pwm duty cycle.
  308. //------------------------------------------------------------------------------------------------------
  309. void set_pwm_duty(void) {
  310. if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
  311. pwm = PWM_MAX;
  312. }
  313. else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
  314. pwm = PWM_MIN;
  315. }
  316. if (pwm < PWM_MAX) {
  317. Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
  318. //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
  319. }
  320. else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
  321. Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 20); // keep switching so set duty cycle at 99.9%
  322. //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
  323. }
  324. }
  325. //------------------------------------------------------------------------------------------------------
  326. // This routine is the charger state machine. It has four states on, off, bulk and float.
  327. // It's called once each time through the main loop to see what state the charger should be in.
  328. // The battery charger can be in one of the following four states:
  329. //
  330. // On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
  331. // watts input is too low for the bulk charging state but not low enough to go into the off state.
  332. // In this state we just set the pwm = 99.9% to get the most of low amount of power available.
  333. // Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
  334. // charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
  335. // of current that the solar panels are generating into the battery.
  336. // Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
  337. // bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
  338. // at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
  339. // voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
  340. // into the bulk charging mode.
  341. // Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
  342. // state when there is no more power being generated by the solar panels. The MOSFETs are turned
  343. // off in this state so that power from the battery doesn't leak back into the solar panel.
  344. //------------------------------------------------------------------------------------------------------
  345. void run_charger(void) {
  346. static int off_count = OFF_NUM;
  347. switch (charger_state) {
  348. case on:
  349. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  350. charger_state = off; // the minimum solar watts then
  351. off_count = OFF_NUM; // go to the charger off state
  352. TURN_OFF_MOSFETS;
  353. }
  354. else if (bat_volts > (BATT_FLOAT - 0.1)) { // else if the battery voltage has gotten above the float
  355. charger_state = bat_float; // battery float voltage go to the charger battery float state
  356. }
  357. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  358. pwm = PWM_MAX; // it means there is not much power being generated by the solar panel
  359. set_pwm_duty(); // so we just set the pwm = 100% so we can get as much of this power as possible
  360. } // and stay in the charger on state
  361. else {
  362. pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; // else if we are making more power than low solar watts figure out what the pwm
  363. charger_state = bulk; // value should be and change the charger to bulk state
  364. }
  365. break;
  366. case bulk:
  367. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  368. charger_state = off; // the minimum solar watts then it is getting dark so
  369. off_count = OFF_NUM; // go to the charger off state
  370. TURN_OFF_MOSFETS;
  371. }
  372. else if (bat_volts > BATT_FLOAT) { // else if the battery voltage has gotten above the float
  373. charger_state = bat_float; // battery float voltage go to the charger battery float state
  374. }
  375. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  376. charger_state = on; // it means there is not much power being generated by the solar panel
  377. TURN_ON_MOSFETS; // so go to charger on state
  378. }
  379. else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
  380. if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
  381. delta = -delta; // delta to make pwm increase or decrease to maximize watts
  382. }
  383. pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
  384. old_sol_watts = sol_watts; // load old_watts with current watts value for next time
  385. set_pwm_duty(); // set pwm duty cycle to pwm value
  386. }
  387. break;
  388. case bat_float:
  389. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  390. charger_state = off; // the minimum solar watts then it is getting dark so
  391. off_count = OFF_NUM; // go to the charger off state
  392. TURN_OFF_MOSFETS;
  393. set_pwm_duty();
  394. }
  395. else if (bat_volts > BATT_FLOAT) { // If we've charged the battery abovethe float voltage
  396. TURN_OFF_MOSFETS; // turn off MOSFETs instead of modiflying duty cycle
  397. pwm = PWM_MAX; // the charger is less efficient at 99% duty cycle
  398. set_pwm_duty(); // write the PWM
  399. }
  400. else if (bat_volts < BATT_FLOAT) { // else if the battery voltage is less than the float voltage - 0.1
  401. pwm = PWM_MAX;
  402. set_pwm_duty(); // start charging again
  403. TURN_ON_MOSFETS;
  404. if (bat_volts < (BATT_FLOAT - 0.1)) { // if the voltage drops because of added load,
  405. charger_state = bulk; // switch back into bulk state to keep the voltage up
  406. }
  407. }
  408. break;
  409. case off: // when we jump into the charger off state, off_count is set with OFF_NUM
  410. TURN_OFF_MOSFETS;
  411. if (off_count > 0) { // this means that we run through the off state OFF_NUM of times with out doing
  412. off_count--; // anything, this is to allow the battery voltage to settle down to see if the
  413. } // battery has been disconnected
  414. else if ((bat_volts > BATT_FLOAT) && (sol_volts > bat_volts)) {
  415. charger_state = bat_float; // if battery voltage is still high and solar volts are high
  416. TURN_ON_MOSFETS;
  417. }
  418. else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < BATT_FLOAT) && (sol_volts > bat_volts)) {
  419. charger_state = bulk;
  420. TURN_ON_MOSFETS;
  421. }
  422. break;
  423. default:
  424. TURN_OFF_MOSFETS;
  425. break;
  426. }
  427. }
  428. //----------------------------------------------------------------------------------------------------------------------
  429. /////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
  430. //----------------------------------------------------------------------------------------------------------------------
  431. void load_control(){
  432. #if LOAD_ALGORITHM == 0
  433. // turn on loads at night when the solar panel is not producing power
  434. // as long as the battery voltage is above LVD
  435. load_on(sol_watts < MIN_SOL_WATTS && bat_volts > LVD);
  436. #else
  437. // dump excess solar energy into the load circuit
  438. load_on(sol_watts > MIN_SOL_WATTS && bat_volts > BATT_FLOAT);
  439. #endif
  440. }
  441. void load_on(boolean new_status) {
  442. if (load_status != new_status) {
  443. load_status = new_status;
  444. digitalWrite(LOAD_PIN, new_status ? HIGH : LOW);
  445. }
  446. }
  447. //------------------------------------------------------------------------------------------------------
  448. // This routine prints all the data out to the serial port.
  449. //------------------------------------------------------------------------------------------------------
  450. void print_data(void) {
  451. Serial.print(seconds,DEC);
  452. Serial.print(" ");
  453. Serial.print("Charging = ");
  454. if (charger_state == on) Serial.print("on ");
  455. else if (charger_state == off) Serial.print("off ");
  456. else if (charger_state == bulk) Serial.print("bulk ");
  457. else if (charger_state == bat_float) Serial.print("float");
  458. Serial.print(" ");
  459. Serial.print("pwm = ");
  460. Serial.print(pwm,DEC);
  461. Serial.print(" ");
  462. Serial.print("Current (panel) = ");
  463. Serial.print(sol_amps);
  464. Serial.print(" ");
  465. Serial.print("Voltage (panel) = ");
  466. Serial.print(sol_volts);
  467. Serial.print(" ");
  468. Serial.print("Power (panel) = ");
  469. Serial.print(sol_volts);
  470. Serial.print(" ");
  471. Serial.print("Battery Voltage = ");
  472. Serial.print(bat_volts);
  473. Serial.print(" ");
  474. Serial.print("\n\r");
  475. //delay(1000);
  476. }
  477. //-------------------------------------------------------------------------------------------------
  478. //---------------------------------Led Indication--------------------------------------------------
  479. //-------------------------------------------------------------------------------------------------
  480. // light an individual LED
  481. // we remember which one was on before in last_lit and turn it off if different
  482. void light_led(char pin)
  483. {
  484. static char last_lit;
  485. if (last_lit == pin)
  486. return;
  487. if (last_lit != 0)
  488. digitalWrite(last_lit, LOW);
  489. digitalWrite(pin, HIGH);
  490. last_lit = pin;
  491. }
  492. // display the current state via LED as follows:
  493. // YELLOW means overvoltage (over 14.1 volts)
  494. // RED means undervoltage (under 11.9 volts)
  495. // GREEN is between 11.9 and 14.1 volts
  496. void led_output(void)
  497. {
  498. static char last_lit;
  499. if(bat_volts > 14.1 )
  500. light_led(LED_YELLOW);
  501. else if(bat_volts > 11.9)
  502. light_led(LED_GREEN);
  503. else
  504. light_led(LED_RED);
  505. }
  506. //------------------------------------------------------------------------------------------------------
  507. //-------------------------- LCD DISPLAY --------------------------------------------------------------
  508. //-------------------------------------------------------------------------------------------------------
  509. void lcd_display()
  510. {
  511. static bool current_backlight_state = -1;
  512. back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
  513. if (current_backlight_state != back_light_pin_State) {
  514. current_backlight_state = back_light_pin_State;
  515. if (back_light_pin_State == HIGH)
  516. lcd.backlight();// finish with backlight on
  517. else
  518. lcd.noBacklight();
  519. }
  520. if (back_light_pin_State == HIGH)
  521. {
  522. time = millis(); // If any of the buttons are pressed, save the time in millis to "time"
  523. }
  524. lcd.setCursor(0, 1);
  525. lcd.print(sol_volts);
  526. lcd.print("V ");
  527. lcd.setCursor(0, 2);
  528. lcd.print(sol_amps);
  529. lcd.print("A");
  530. lcd.setCursor(0, 3);
  531. lcd.print(sol_watts);
  532. lcd.print("W ");
  533. lcd.setCursor(8, 1);
  534. lcd.print(bat_volts);
  535. lcd.setCursor(8,2);
  536. if (charger_state == on)
  537. lcd.print("on ");
  538. else if (charger_state == off)
  539. lcd.print("off ");
  540. else if (charger_state == bulk)
  541. lcd.print("bulk ");
  542. else if (charger_state == bat_float)
  543. {
  544. lcd.print(" ");
  545. lcd.setCursor(8,2);
  546. lcd.print("float");
  547. }
  548. //-----------------------------------------------------------
  549. //--------------------Battery State Of Charge ---------------
  550. //-----------------------------------------------------------
  551. int pct = 100.0*(bat_volts - 11.3)/(12.7 - 11.3);
  552. if (pct < 0)
  553. pct = 0;
  554. else if (pct > 100)
  555. pct = 100;
  556. lcd.setCursor(12,0);
  557. lcd.print((char)(pct*5/100));
  558. lcd.setCursor(8,3);
  559. pct = pct - (pct%10);
  560. lcd.print(pct);
  561. lcd.print("% ");
  562. //---------------------------------------------------------------------
  563. //------------------Duty Cycle-----------------------------------------
  564. //---------------------------------------------------------------------
  565. lcd.setCursor(15,0);
  566. lcd.print("PWM");
  567. lcd.setCursor(19,0);
  568. lcd.write(PWM_ICON);
  569. lcd.setCursor(15,1);
  570. lcd.print(" ");
  571. lcd.setCursor(15,1);
  572. lcd.print(pwm);
  573. lcd.print("% ");
  574. //----------------------------------------------------------------------
  575. //------------------------Load Status-----------------------------------
  576. //----------------------------------------------------------------------
  577. lcd.setCursor(15,2);
  578. lcd.print("Load");
  579. lcd.setCursor(15,3);
  580. if (load_status)
  581. {
  582. lcd.print("On ");
  583. }
  584. else
  585. {
  586. lcd.print("Off ");
  587. }
  588. spinner();
  589. backLight_timer(); // call the backlight timer function in every loop
  590. }
  591. void backLight_timer(){
  592. if((millis() - time) <= 15000) // if it's been less than the 15 secs, turn the backlight on
  593. lcd.backlight(); // finish with backlight on
  594. else
  595. lcd.noBacklight(); // if it's been more than 15 secs, turn the backlight off
  596. }
  597. void spinner(void) {
  598. static int cspinner;
  599. static char spinner_chars[] = { '*','*', '*', ' ', ' '};
  600. cspinner++;
  601. lcd.print(spinner_chars[cspinner%sizeof(spinner_chars)]);
  602. }
  603. //-------------------------------------------------------------------------
  604. //----------------------------- ESP8266 WiFi ------------------------------
  605. //--------------------------Plot System data on thingspeak.com-------------
  606. //-------------------------------------------------------------------------
  607. void wifi_datalog()
  608. {
  609. // thingspeak needs 15 sec delay between updates
  610. static int lastlogged;
  611. if ( seconds - lastlogged < 16 )
  612. return;
  613. lastlogged = seconds;
  614. // convert to string
  615. char buf[16];
  616. String strTemp = dtostrf( sol_volts, 4, 1, buf);
  617. Serial.println(strTemp);
  618. // TCP connection
  619. String cmd = "AT+CIPSTART=\"TCP\",\"";
  620. cmd += "184.106.153.149"; // api.thingspeak.com
  621. cmd += "\",80";
  622. ser.println(cmd);
  623. if(ser.find("Error")){
  624. Serial.println("AT+CIPSTART error");
  625. return;
  626. }
  627. // prepare GET string
  628. String getStr = "GET /update?api_key=";
  629. getStr += apiKey;
  630. getStr +="&field1=";
  631. getStr += String(strTemp);
  632. getStr += "\r\n\r\n";
  633. // send data length
  634. cmd = "AT+CIPSEND=";
  635. cmd += String(getStr.length());
  636. ser.println(cmd);
  637. if(ser.find(">")){
  638. ser.print(getStr);
  639. }
  640. else{
  641. ser.println("AT+CIPCLOSE");
  642. // alert user
  643. Serial.println("AT+CIPCLOSE");
  644. }
  645. }