MPPT_Code_ESP8266.ino 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. //----------------------------------------------------------------------------------------------------
  2. // ARDUINO MPPT SOLAR CHARGE CONTROLLER (Version-3)
  3. // Author: Debasish Dutta/deba168
  4. // www.opengreenenergy.in
  5. //
  6. // This code is for an arduino Nano based Solar MPPT charge controller.
  7. // This code is a modified version of sample code from www.timnolan.com
  8. // updated 21/06/2015
  9. //
  10. // Mods by Aplavins 06/19/2015
  11. //// Specifications : //////////////////////////////////////////////////////////////////////////////////////////////////////
  12. //
  13. // 1.Solar panel power = 50W
  14. //
  15. // 2.Rated Battery Voltage= 12V ( lead acid type )
  16. // 3.Maximum current = 5A //
  17. // 4.Maximum load current =10A //
  18. // 5. In put Voltage = Solar panel with Open circuit voltage from 17 to 25V //
  19. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  20. #include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
  21. #include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
  22. #include <Wire.h>
  23. #include <SoftwareSerial.h> // using the Software Serial library Ref : http://www.arduino.cc/en/Reference/SoftwareSerialConstructor
  24. //----------------------------------------------------------------------------------------------------------
  25. //////// Arduino pins Connections//////////////////////////////////////////////////////////////////////////////////
  26. // A0 - Voltage divider (solar)
  27. // A1 - ACS 712 Out
  28. // A2 - Voltage divider (battery)
  29. // A4 - LCD SDA
  30. // A5 - LCD SCL
  31. // D2 - ESP8266 Tx
  32. // D3 - ESP8266 Rx through the voltage divider
  33. // D5 - LCD back control button
  34. // D6 - Load Control
  35. // D8 - 2104 MOSFET driver SD
  36. // D9 - 2104 MOSFET driver IN
  37. // D11- Green LED
  38. // D12- Yellow LED
  39. // D13- Red LED
  40. // Full scheatic is given at http://www.instructables.com/files/orig/F9A/LLR8/IAPASVA1/F9ALLR8IAPASVA1.pdf
  41. ///////// Definitions /////////////////////////////////////////////////////////////////////////////////////////////////
  42. // Turn this on to use the ESP8266 chip. If you set this to 0, the periodic updates will not happen
  43. #define ENABLE_DATALOGGER 1
  44. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  45. #define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
  46. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  47. #define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
  48. #define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
  49. // ACS 712 Current Sensor is used. Current Measured = (5/(1024 *0.185))*ADC - (2.5/0.185)
  50. #define SOL_AMPS_SCALE 0.026393581 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
  51. #define SOL_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2 // R1=100k and R2=20k
  52. #define BAT_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get battery volts
  53. #define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
  54. #define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
  55. #define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
  56. #define PWM_MAX 100 // the value for pwm duty cyle 0-100%
  57. #define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
  58. #define PWM_START 90 // the value for pwm duty cyle 0-100%
  59. #define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
  60. #define TRUE 1
  61. #define FALSE 0
  62. #define ON TRUE
  63. #define OFF FALSE
  64. #define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
  65. #define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
  66. #define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
  67. #define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
  68. #define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
  69. #define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
  70. #define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
  71. #define BATT_FLOAT 13.60 // battery voltage we want to stop charging at
  72. #define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
  73. #define LVD 11.5 //Low voltage disconnect setting for a 12V system
  74. #define OFF_NUM 9 // number of iterations of off charger state
  75. //------------------------------------------------------------------------------------------------------
  76. //Defining led pins for indication
  77. #define LED_RED 11
  78. #define LED_GREEN 12
  79. #define LED_YELLOW 13
  80. //-----------------------------------------------------------------------------------------------------
  81. // Defining load control pin
  82. #define LOAD_PIN 6 // pin-2 is used to control the load
  83. //-----------------------------------------------------------------------------------------------------
  84. // Defining lcd back light pin
  85. #define BACK_LIGHT_PIN 5 // pin-5 is used to control the lcd back light
  86. // ---------------------------For ESP8266--------------------------------------------------------------
  87. // replace with your channel's thingspeak API key
  88. String apiKey = "DPK8RMTFY2B1XCAF";
  89. // connect 2 to TX of Serial USB
  90. // connect 3 to RX of serial USB
  91. SoftwareSerial ser(2,3); // RX, TX
  92. //---------------------------------------------------------------------------------------------------------
  93. //------------------------------------------------------------------------------------------------------
  94. /////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
  95. //-------------------------------------------------------------------------------------------------------
  96. byte solar[8] = //icon for termometer
  97. {
  98. 0b11111,
  99. 0b10101,
  100. 0b11111,
  101. 0b10101,
  102. 0b11111,
  103. 0b10101,
  104. 0b11111,
  105. 0b00000
  106. };
  107. byte battery[8]=
  108. {
  109. 0b01110,
  110. 0b11011,
  111. 0b10001,
  112. 0b10001,
  113. 0b11111,
  114. 0b11111,
  115. 0b11111,
  116. 0b11111,
  117. };
  118. byte _PWM [8]=
  119. {
  120. 0b11101,
  121. 0b10101,
  122. 0b10101,
  123. 0b10101,
  124. 0b10101,
  125. 0b10101,
  126. 0b10101,
  127. 0b10111,
  128. };
  129. //-------------------------------------------------------------------------------------------------------
  130. // global variables
  131. float sol_amps; // solar amps
  132. float sol_volts; // solar volts
  133. float bat_volts; // battery volts
  134. float sol_watts; // solar watts
  135. float old_sol_watts = 0; // solar watts from previous time through ppt routine
  136. unsigned int seconds = 0; // seconds from timer routine
  137. unsigned int prev_seconds = 0; // seconds value from previous pass
  138. unsigned int interrupt_counter = 0; // counter for 20us interrrupt
  139. unsigned long time = 0; // variable to store time the back light control button was pressed in millis
  140. int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
  141. int pwm = 0; // pwm duty cycle 0-100%
  142. int back_light_pin_State = 0; // variable for storing the state of the backlight button
  143. int load_status = 0; // variable for storing the load output state (for writing to LCD)
  144. enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
  145. // set the LCD address to 0x27 for a 20 chars 4 line display
  146. // Set the pins on the I2C chip used for LCD connections:
  147. // addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
  148. LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
  149. //------------------------------------------------------------------------------------------------------
  150. // This routine is automatically called at powerup/reset
  151. //------------------------------------------------------------------------------------------------------
  152. void setup() // run once, when the sketch starts
  153. {
  154. pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
  155. TURN_OFF_MOSFETS; // turn off MOSFET driver chip
  156. charger_state = off; // start with charger state as off
  157. lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
  158. lcd.backlight();
  159. lcd.createChar(1,solar);
  160. lcd.createChar(2,battery);
  161. lcd.createChar(3,_PWM);
  162. pinMode(LED_RED, OUTPUT);
  163. pinMode(LED_GREEN, OUTPUT);
  164. pinMode(LED_YELLOW, OUTPUT);
  165. Timer1.initialize(20); // initialize timer1, and set a 20uS period
  166. Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
  167. Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
  168. Serial.begin(9600); // open the serial port at 9600 bps:
  169. ser.begin(9600); // enable software serial
  170. ser.println("AT+RST"); // reset ESP8266
  171. pwm = PWM_START; //starting value for pwm
  172. pinMode(BACK_LIGHT_PIN, INPUT);
  173. pinMode(LOAD_PIN,OUTPUT);
  174. digitalWrite(LOAD_PIN,LOW); // default load state is OFF
  175. digitalWrite(BACK_LIGHT_PIN,LOW); // default LCd back light is OFF
  176. // display the constant stuff on the LCD
  177. lcd.setCursor(0, 0);
  178. lcd.print("SOL");
  179. lcd.setCursor(4, 0);
  180. lcd.write(1);
  181. lcd.setCursor(8, 0);
  182. lcd.print("BAT");
  183. lcd.setCursor(12, 0);
  184. lcd.write(2);
  185. }
  186. //------------------------------------------------------------------------------------------------------
  187. // Main loop
  188. //------------------------------------------------------------------------------------------------------
  189. void loop()
  190. {
  191. read_data(); // read data from inputs
  192. run_charger(); // run the charger state machine
  193. print_data(); // print data
  194. load_control(); // control the connected load
  195. led_output(); // led indication
  196. lcd_display(); // lcd display
  197. #if ENABLE_DATALOGGER
  198. wifi_datalog(); // sends data to thingspeak
  199. #endif
  200. }
  201. //------------------------------------------------------------------------------------------------------
  202. // This routine reads and averages the analog inputs for this system, solar volts, solar amps and
  203. // battery volts.
  204. //------------------------------------------------------------------------------------------------------
  205. int read_adc(int channel){
  206. int sum = 0;
  207. int temp;
  208. int i;
  209. for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
  210. temp = analogRead(channel); // read the input pin
  211. sum += temp; // store sum for averaging
  212. delayMicroseconds(50); // pauses for 50 microseconds
  213. }
  214. return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
  215. }
  216. //------------------------------------------------------------------------------------------------------
  217. // This routine reads all the analog input values for the system. Then it multiplies them by the scale
  218. // factor to get actual value in volts or amps.
  219. //------------------------------------------------------------------------------------------------------
  220. void read_data(void) {
  221. sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -12.01); //input of solar amps
  222. sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
  223. bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
  224. sol_watts = sol_amps * sol_volts ; //calculations of solar watts
  225. }
  226. //------------------------------------------------------------------------------------------------------
  227. // This is interrupt service routine for Timer1 that occurs every 20uS.
  228. //
  229. //------------------------------------------------------------------------------------------------------
  230. void callback()
  231. {
  232. if (interrupt_counter++ > ONE_SECOND) { // increment interrupt_counter until one second has passed
  233. interrupt_counter = 0; // reset the counter
  234. seconds++; // then increment seconds counter
  235. }
  236. }
  237. //------------------------------------------------------------------------------------------------------
  238. // This routine uses the Timer1.pwm function to set the pwm duty cycle.
  239. //------------------------------------------------------------------------------------------------------
  240. void set_pwm_duty(void) {
  241. if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
  242. pwm = PWM_MAX;
  243. }
  244. else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
  245. pwm = PWM_MIN;
  246. }
  247. if (pwm < PWM_MAX) {
  248. Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
  249. //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
  250. }
  251. else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
  252. Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 20); // keep switching so set duty cycle at 99.9%
  253. //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
  254. }
  255. }
  256. //------------------------------------------------------------------------------------------------------
  257. // This routine is the charger state machine. It has four states on, off, bulk and float.
  258. // It's called once each time through the main loop to see what state the charger should be in.
  259. // The battery charger can be in one of the following four states:
  260. //
  261. // On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
  262. // watts input is too low for the bulk charging state but not low enough to go into the off state.
  263. // In this state we just set the pwm = 99.9% to get the most of low amount of power available.
  264. // Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
  265. // charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
  266. // of current that the solar panels are generating into the battery.
  267. // Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
  268. // bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
  269. // at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
  270. // voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
  271. // into the bulk charging mode.
  272. // Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
  273. // state when there is no more power being generated by the solar panels. The MOSFETs are turned
  274. // off in this state so that power from the battery doesn't leak back into the solar panel.
  275. //------------------------------------------------------------------------------------------------------
  276. void run_charger(void) {
  277. static int off_count = OFF_NUM;
  278. switch (charger_state) {
  279. case on:
  280. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  281. charger_state = off; // the minimum solar watts then
  282. off_count = OFF_NUM; // go to the charger off state
  283. TURN_OFF_MOSFETS;
  284. }
  285. else if (bat_volts > (BATT_FLOAT - 0.1)) { // else if the battery voltage has gotten above the float
  286. charger_state = bat_float; // battery float voltage go to the charger battery float state
  287. }
  288. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  289. pwm = PWM_MAX; // it means there is not much power being generated by the solar panel
  290. set_pwm_duty(); // so we just set the pwm = 100% so we can get as much of this power as possible
  291. } // and stay in the charger on state
  292. else {
  293. pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; // else if we are making more power than low solar watts figure out what the pwm
  294. charger_state = bulk; // value should be and change the charger to bulk state
  295. }
  296. break;
  297. case bulk:
  298. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  299. charger_state = off; // the minimum solar watts then it is getting dark so
  300. off_count = OFF_NUM; // go to the charger off state
  301. TURN_OFF_MOSFETS;
  302. }
  303. else if (bat_volts > BATT_FLOAT) { // else if the battery voltage has gotten above the float
  304. charger_state = bat_float; // battery float voltage go to the charger battery float state
  305. }
  306. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  307. charger_state = on; // it means there is not much power being generated by the solar panel
  308. TURN_ON_MOSFETS; // so go to charger on state
  309. }
  310. else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
  311. if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
  312. delta = -delta; // delta to make pwm increase or decrease to maximize watts
  313. }
  314. pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
  315. old_sol_watts = sol_watts; // load old_watts with current watts value for next time
  316. set_pwm_duty(); // set pwm duty cycle to pwm value
  317. }
  318. break;
  319. case bat_float:
  320. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  321. charger_state = off; // the minimum solar watts then it is getting dark so
  322. off_count = OFF_NUM; // go to the charger off state
  323. TURN_OFF_MOSFETS;
  324. set_pwm_duty();
  325. }
  326. else if (bat_volts > BATT_FLOAT) { // If we've charged the battery abovethe float voltage
  327. TURN_OFF_MOSFETS; // turn off MOSFETs instead of modiflying duty cycle
  328. pwm = PWM_MAX; // the charger is less efficient at 99% duty cycle
  329. set_pwm_duty(); // write the PWM
  330. }
  331. else if (bat_volts < BATT_FLOAT) { // else if the battery voltage is less than the float voltage - 0.1
  332. pwm = PWM_MAX;
  333. set_pwm_duty(); // start charging again
  334. TURN_ON_MOSFETS;
  335. if (bat_volts < (BATT_FLOAT - 0.1)) { // if the voltage drops because of added load,
  336. charger_state = bulk; // switch back into bulk state to keep the voltage up
  337. }
  338. }
  339. break;
  340. case off: // when we jump into the charger off state, off_count is set with OFF_NUM
  341. TURN_OFF_MOSFETS;
  342. if (off_count > 0) { // this means that we run through the off state OFF_NUM of times with out doing
  343. off_count--; // anything, this is to allow the battery voltage to settle down to see if the
  344. } // battery has been disconnected
  345. else if ((bat_volts > BATT_FLOAT) && (sol_volts > bat_volts)) {
  346. charger_state = bat_float; // if battery voltage is still high and solar volts are high
  347. TURN_ON_MOSFETS;
  348. }
  349. else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < BATT_FLOAT) && (sol_volts > bat_volts)) {
  350. charger_state = bulk;
  351. TURN_ON_MOSFETS;
  352. }
  353. break;
  354. default:
  355. TURN_OFF_MOSFETS;
  356. break;
  357. }
  358. }
  359. //----------------------------------------------------------------------------------------------------------------------
  360. /////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
  361. //----------------------------------------------------------------------------------------------------------------------
  362. void load_control(){
  363. if ((sol_watts < MIN_SOL_WATTS) && (bat_volts > LVD)){ // If the panel isn't producing, it's probably night
  364. digitalWrite(LOAD_PIN, LOW); // turn the load on
  365. load_status = 1; // record that the load is on
  366. }
  367. else{ // If the panel is producing, it's day time
  368. digitalWrite(LOAD_PIN, HIGH); // turn the load off
  369. load_status = 0; // record that the load is off
  370. }
  371. }
  372. //------------------------------------------------------------------------------------------------------
  373. // This routine prints all the data out to the serial port.
  374. //------------------------------------------------------------------------------------------------------
  375. void print_data(void) {
  376. Serial.print(seconds,DEC);
  377. Serial.print(" ");
  378. Serial.print("Charging = ");
  379. if (charger_state == on) Serial.print("on ");
  380. else if (charger_state == off) Serial.print("off ");
  381. else if (charger_state == bulk) Serial.print("bulk ");
  382. else if (charger_state == bat_float) Serial.print("float");
  383. Serial.print(" ");
  384. Serial.print("pwm = ");
  385. Serial.print(pwm,DEC);
  386. Serial.print(" ");
  387. Serial.print("Current (panel) = ");
  388. Serial.print(sol_amps);
  389. Serial.print(" ");
  390. Serial.print("Voltage (panel) = ");
  391. Serial.print(sol_volts);
  392. Serial.print(" ");
  393. Serial.print("Power (panel) = ");
  394. Serial.print(sol_volts);
  395. Serial.print(" ");
  396. Serial.print("Battery Voltage = ");
  397. Serial.print(bat_volts);
  398. Serial.print(" ");
  399. Serial.print("\n\r");
  400. //delay(1000);
  401. }
  402. //-------------------------------------------------------------------------------------------------
  403. //---------------------------------Led Indication--------------------------------------------------
  404. //-------------------------------------------------------------------------------------------------
  405. // light an individual LED
  406. // we remember which one was on before in last_lit and turn it off if different
  407. void light_led(char pin)
  408. {
  409. static char last_lit;
  410. if (last_lit == pin)
  411. return;
  412. if (last_lit != 0)
  413. digitalWrite(last_lit, LOW);
  414. digitalWrite(pin, HIGH);
  415. last_lit = pin;
  416. }
  417. // display the current state via LED as follows:
  418. // YELLOW means overvoltage (over 14.1 volts)
  419. // RED means undervoltage (under 11.9 volts)
  420. // GREEN is between 11.9 and 14.1 volts
  421. void led_output(void)
  422. {
  423. static char last_lit;
  424. if(bat_volts > 14.1 )
  425. light_led(LED_YELLOW);
  426. else if(bat_volts > 11.9)
  427. light_led(LED_GREEN);
  428. else
  429. light_led(LED_RED);
  430. }
  431. //------------------------------------------------------------------------------------------------------
  432. //-------------------------- LCD DISPLAY --------------------------------------------------------------
  433. //-------------------------------------------------------------------------------------------------------
  434. void lcd_display()
  435. {
  436. static bool current_backlight_state = -1;
  437. back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
  438. if (current_backlight_state != back_light_pin_State) {
  439. current_backlight_state = back_light_pin_State;
  440. if (back_light_pin_State == HIGH)
  441. lcd.backlight();// finish with backlight on
  442. else
  443. lcd.noBacklight();
  444. }
  445. if (back_light_pin_State == HIGH)
  446. {
  447. time = millis(); // If any of the buttons are pressed, save the time in millis to "time"
  448. }
  449. lcd.setCursor(0, 1);
  450. lcd.print(sol_volts);
  451. lcd.print("V ");
  452. lcd.setCursor(0, 2);
  453. lcd.print(sol_amps);
  454. lcd.print("A");
  455. lcd.setCursor(0, 3);
  456. lcd.print(sol_watts);
  457. lcd.print("W ");
  458. lcd.setCursor(8, 1);
  459. lcd.print(bat_volts);
  460. lcd.setCursor(8,2);
  461. if (charger_state == on)
  462. lcd.print("on ");
  463. else if (charger_state == off)
  464. lcd.print("off ");
  465. else if (charger_state == bulk)
  466. lcd.print("bulk ");
  467. else if (charger_state == bat_float)
  468. {
  469. lcd.print(" ");
  470. lcd.setCursor(8,2);
  471. lcd.print("float");
  472. }
  473. //-----------------------------------------------------------
  474. //--------------------Battery State Of Charge ---------------
  475. //-----------------------------------------------------------
  476. lcd.setCursor(8,3);
  477. int pct = 100.0*(bat_volts - 11.3)/(12.7 - 11.3);
  478. if (pct < 0)
  479. pct = 0;
  480. else if (pct > 100)
  481. pct = 100;
  482. pct = pct - (pct%10);
  483. lcd.print(pct);
  484. lcd.print("% ");
  485. //---------------------------------------------------------------------
  486. //------------------Duty Cycle-----------------------------------------
  487. //---------------------------------------------------------------------
  488. lcd.setCursor(15,0);
  489. lcd.print("PWM");
  490. lcd.setCursor(19,0);
  491. lcd.write(3);
  492. lcd.setCursor(15,1);
  493. lcd.print(" ");
  494. lcd.setCursor(15,1);
  495. lcd.print(pwm);
  496. lcd.print("%");
  497. //----------------------------------------------------------------------
  498. //------------------------Load Status-----------------------------------
  499. //----------------------------------------------------------------------
  500. lcd.setCursor(15,2);
  501. lcd.print("Load");
  502. lcd.setCursor(15,3);
  503. if (load_status == 1)
  504. {
  505. lcd.print("On ");
  506. }
  507. else
  508. {
  509. lcd.print("Off ");
  510. }
  511. spinner();
  512. backLight_timer(); // call the backlight timer function in every loop
  513. }
  514. void backLight_timer(){
  515. if((millis() - time) <= 15000) // if it's been less than the 15 secs, turn the backlight on
  516. lcd.backlight(); // finish with backlight on
  517. else
  518. lcd.noBacklight(); // if it's been more than 15 secs, turn the backlight off
  519. }
  520. void spinner(void) {
  521. static int cspinner;
  522. static char spinner_chars[] = { '/','-','\\','|' };
  523. cspinner++;
  524. lcd.print(spinner_chars[cspinner%4]);
  525. }
  526. //-------------------------------------------------------------------------
  527. //----------------------------- ESP8266 WiFi ------------------------------
  528. //--------------------------Plot System data on thingspeak.com-------------
  529. //-------------------------------------------------------------------------
  530. void wifi_datalog()
  531. {
  532. // thingspeak needs 15 sec delay between updates
  533. static int lastlogged;
  534. if ( seconds - lastlogged < 16 )
  535. return;
  536. lastlogged = seconds;
  537. // convert to string
  538. char buf[16];
  539. String strTemp = dtostrf( sol_volts, 4, 1, buf);
  540. Serial.println(strTemp);
  541. // TCP connection
  542. String cmd = "AT+CIPSTART=\"TCP\",\"";
  543. cmd += "184.106.153.149"; // api.thingspeak.com
  544. cmd += "\",80";
  545. ser.println(cmd);
  546. if(ser.find("Error")){
  547. Serial.println("AT+CIPSTART error");
  548. return;
  549. }
  550. // prepare GET string
  551. String getStr = "GET /update?api_key=";
  552. getStr += apiKey;
  553. getStr +="&field1=";
  554. getStr += String(strTemp);
  555. getStr += "\r\n\r\n";
  556. // send data length
  557. cmd = "AT+CIPSEND=";
  558. cmd += String(getStr.length());
  559. ser.println(cmd);
  560. if(ser.find(">")){
  561. ser.print(getStr);
  562. }
  563. else{
  564. ser.println("AT+CIPCLOSE");
  565. // alert user
  566. Serial.println("AT+CIPCLOSE");
  567. }
  568. }